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Today’s tasks require a plethora of analytics tasks to be conducted to tackle

state-of-the-art computational challenges posed in society impacting many

areas including health care, automotive, banking, natural language process-

ing, image detection, and many more data analytics related tasks. Sharing

existing analytics functions allows reuse and reduces overall effort. However,

integrating deployment frameworks in the age of cloud computing is often

out of reach for domain experts. Simple frameworks are needed that allow

even non-experts to deploy and host services in the cloud. To avoid vendor

lock-in, we require a generalized composable analytics service framework

that allows users to integrate their services and those offered in clouds, not

only by one, but by many cloud compute and service providers.

We report on work that we conducted to provide a service integration

framework for composing generalized analytics frameworks on multi-cloud

providers that we call our Generalized AI Service (GAS) Generator. We

demonstrate the framework’s usability by showcasing useful analytics work-

flows on various cloud providers, including AWS, Azure, and Google and

edge computing IoT devices. The examples are based on Scikit learn to use

them also in educational settings that can easily be replicated and expanded

upon. Benchmarks are used to compare the different services and showcase

general replicability.
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1 INTRODUCTION
In today’s application, scientists want to share their services with

many colleagues while not only offering the services as bare metal

programs but exposing the functionality as a Software as a Service

(SaaS). This has the advantage that the services can be readily reused

by other applications and hosted in the cloud, allowing access to

state-of-the-art services or volumes of resources that otherwise

would not be accessible to individual domain experts. Through

the increased availability, resource constraints can be reduced, and

scientists can offer their analytics workflows as services to the

community. This may include long-lasting services envisioned by

cloud computing as part of its Software as a Service (SaaS) paradigm

or for smaller analytics functions as microservices. Furthermore, a

subset of analytics functions can be offered as part of a serverless

computing model, elevating the penetration from a pure bare metal

solution to a multi-pronged cloud-based service offering.

While working with many professionals, researchers, and stu-

dents, we found that the barriers to entry to accomplish this goal

remain very high, and would elude many domain experts as they

have neither the expertise nor the time to learn the expertise neces-

sary to conduct the infrastructure-related tasks integrating DevOps

and analytics tasks. Although recent developments, especially on

the serverless computing side, have made progress, we ought to

leverage the existing expertise of the domain scientists while au-

tomating the creation of various services from SaaS, microservices,

and serverless computing. Having worked with this community, we

found that the educational steps involved for a beginner take about

two to three months to get up to a level where the development

of cloud-based services is possible. We set the goal to explore if

it is possible to drastically reduce the time needed to create such

services.

For this reason, we developed a sophisticated but easy to use

framework that takes a regular python function and converts it

automatically into a secure REST service andOpenAPI specifications

[35] that can be reused in the ecosystem of cloud services. We used

this framework to create many AI-based REST services to showcase

the approach’s validity. We used examples from SciKit-learn [43]

and benchmark the execution of the resulting REST services on

various clouds and an IoT device.

The paper is structured as follows. In Sec. 2 we will start with a

very brief background section to allow domain experts to catch up

with the terminology and concepts used in our architecture. The

background analysis leads us to our requirements presented in Sec. 3

and our architectural design shown in Sec. 4. Our benchmarks are

collected in Sec. 6. We present our conclusion in Sec. 8.

In the appendix, a small number of useful notes are provided

to ease replication of what we have achieved by others. In the

final publication, the appendix can be removed with a link to our

manual for the pilot framework presented here [51, 52] where we

will include the content of the appendix.

2 BACKGROUND
In this background section, we provide a small summary of activities

related to this research so that domain experts can get a small intro-

duction to concepts that we use to implement our architecture. It is

beyond the scope of this paper to give more detailed introductions

in topics such as IaaS, SaaS, microservices, serverless computing,

OpenAPI, and REST services. The sections will, however, be useful

as a starting point for further research to the reader.

2.1 The Big Data Reference Architecture
NIST has developed a Big Data Reference Architecture as part of

the NIST Big Data Interoperability Framework (NBDIF)[18] and

identified several use cases that motivate it [15]. The reference ar-

chitecture is depicted in Fig. 1. It includes the following components:

Data Provider, Big Data Application Provider, Big Data Framework

Provider, Data Consumer and System Orchestrator as well as two

overarching fabrics: security and privacy and system management.

There are three types of linkages, namely Big Data Information flow,
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Service Use and Software Tools, and algorithms transfer. The architec-
ture presents a level of abstraction to define Big Data applications.

Components that implement sophisticated functionality work in

concert to address the challenging creation of instantiating architec-

tures beyond the conceptual stage. As such, the components interact

with each other that are expressed through the linkages within the

NBDIF. The next logical step is to explore how it can benefit and be

used for analytics services.
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Fig. 1. NIST Big Data Reference Architecture [54]

NIST has developed through open working group participation

the following documents related to the NBDIF [13–20, 54]. Within

these activities, Volume 8 is of especial importance as it allows a set

of Big Data Architectural needs [52][49]. This effort builds the basis

of our activities reported here while expanding it to cloud providers

and services focusing on Analytics Services, which are not covered

by the current volumes.

In a previous effort, we have developed a reference implementa-

tion that follows the architecture laid out in NBDIF and is easy to use

by scientists. However, it focused mostly on multi-cloud provider

access via REST services and command-line tools. The reference

implementation is done as part of the cloudmesh project, which

was one of the first hybrid multi-cloud provider interfaces, even

including cloud technologies that are no longer active such as Eu-

calyptus [26], OpenCirrus [11], FutureGrid [55], and Comet Cloud

[56]. Today, it supports clouds such as AWS [2], Azure [34], Google

Cloud Platform [21], Oracle [41], and OpenStack [40]. It will offer

further value as it also explores the integration of MapReduce frame-

works such as Hadoop [5] and Spark [6], as well as container-based

frameworks such as Docker [25], and Kubernetes [32].

However, the work presented here focuses on creating analytics

services that can be automatically created and hosted on any of

the clouds supported by cloudmesh. This is a non-trivial effort due

to the large number of technologies involved and is outside of the

expertise of domain scientists. However, the use of cloudmeshmakes

it possible for the domain scientist to easily access these services

and leverage our more than ten years of experience in this field.

The previouswork provides uswith a blueprint on how to proceed.

We list the following main findings of our earlier work that we

leverage as part of this work.

Software Defined Analytics Services and Applications.
Just as in the NBDIF, the utilization of DevOps to deliver

Software-Defined (SD) Big Data applications is of utmost im-

portance for the design of reusable services and components

[8, 9, 51].

Multi-cloud Provider Interfaces. Volume 8was through com-

munity input shaped in such a form that it allows multi-cloud

interfaces. Such interfaces have been in practical use in our

software and showcase the validity of the NIST-BDRA ap-

proach. It is clear that we need to introduce such multi-cloud

and multi-service interfaces for analytics-related tasks when-

ever possible as motivated in our introduction.

Use Case Collection. NIST has provided as part of the NIST

BDRA document Vol. 6 [18] several use cases that can be

analyzed and from which common big data services can be

detected. These use cases were sufficient to drive the NIST

BDRA document [18] and allowed the community to investi-

gate initial implementations. These use cases also motivate

the work conducted in this effort.

Independent API Specification Leveraging OpenAPI.
Although the use of OpenAPI [35, 39] is not required as part

of the NIST specification, it can be used to formulate services

in a language-independent fashion. Hence it allows creating,
evolving and promoting a vendor-neutral description format.
This is important to provide for our analytics services ap-

proach to promote a vendor-neutral and independent effort.

API’s and Tools Targeting A Multi-Layered Architecture.
In our previous effort, we learned that we need to provide

support for tools, services, and APIs on multiple levels in a

multi-layered architecture. While some users expect a gen-

eralized specification other users may require access on the

command line, deployed services, or even a Jupyter notebook.

We observe that in many cases, the entry-level to define API

specification is too high for many. This is the case for do-

main experts in the analytics community that often lack the

necessary expertise for general service integration and de-

ployment.

Hence, previous work provides us with a blueprint on how to

proceed, which we summarize as follows:

Develop an easy to use framework that allows the scientists (a) to
develop shareable analytics components (b) allow for the deployment
of them, and (c) allow for the easy reuse of the services by community
members leveraging the deployments.

2.2 REST
One of the most common architectural styles for cloud-related ser-

vices is based on ReprEsentational State Transfer (REST). REST
often uses the HTTP protocol for the CRUD functions, which create,

read, update, and delete resources. It is important to note that REST

is not a standard, but it is a software architectural style for building

network services. When referred to as a part of the HTTP protocol,

REST has the methods of GET, PUT, POST, and DELETE. These
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methods are used to implement the CRUD functions on collections

and items for which REST introduces abstractions for managing

these collections and single resources [50] as explained in Fig. 2.

Collection of resources. Assume the URI, http://.../resources/,
identifies a collection of resources. The following CRUD functions

would be implemented:

GET: List the URIs and details about the collection’s items.

PUT: Replace the collection with a different collection.

POST: Make a new entry in the collection. The operation returns new

entry’s URI and assigns it automatically.

DELETE: Delete the collection.

Single Resource. Assume the URI, http://.../resources/item1,
identifies a single resource in a collection. The following CRUD func-

tions would be implemented:

GET: Fetch a representation of the item in the collection, extracted in

the appropriate media type.

PUT: Replace the item in the collection. If the item does not exist,

then create the item.

POST: Typically, not used. Treat the item as a collection and make a

new entry in it.

DELETE: Delete the item in the collection.

Fig. 2. REST definitions for a collection and single resources.

Because REST has a defined structure, there are tools that manage

programming to REST style architectures. They include, for example,

different categories [50]:

• REST Specification Frameworks which define REST ser-

vice specifications for generating REST services in a language

and framework independent manner such as Swagger 2.0

[36], OpenAPI 3.0 [37] and RAML [45].

• RESTprogramming language supportwhich include tools
and services for targeting specific programming languages

such as Flask Restful [10], and Django Rest [24] for Python.

• REST documentation-based tools which are tools to doc-

ument REST specifications. One such tool is Swagger [48].

• REST design support tools which support the design pro-

cess in developing REST services while defining reusable

client and server that can be integrated and enhanced such

as Swagger [48] and other tools available at OpenAPI Tools

[38] to generate code from OpenAPI specifications [47]

Within our work reported here, we will heavily base our architec-

ture on REST. From this small discussion, it is evident that although

the concept of REST is easy to understand, a significant amount of

expertise is needed to apply it, which domain scientists may not be

interested in to know but keen on reusing without needing to know

the details.

2.3 OpenAPI
One of the important aspects of generating REST services is a

language-independent formulation of REST services. For this rea-

son, the “OpenAPI Specification (OAS) defines a standard, language-

agnostic interface to RESTful APIs which allows both humans and

computers to discover and understand the capabilities of the service

without access to source code, documentation, or through network

traffic inspection. When properly defined, a consumer can under-

stand and interact with the remote service with minimal implemen-

tation logic [35].”

Hence the specification allows us to not only display the docu-

mentation but also allows us to use it to generate the clients and

server stubs from it automatically. OpenAPI can be formulated as a

YAML Ain’t Markup Language (YAML) [42] file.

An OpenAPI definition can then be used by documentation gen-

eration tools to display the API, code generation tools to generate

servers and clients in various programming languages, testing tools,

and many other use cases. One of the issues with using the OpenAPI

during the design of a project is that it takes considerable effort to

understand the specification. Based on our experience of integrating

it into university courses, it is a formidable effort to learn and use it.

The lessons from this educational effort that includes researchers,

professionals, graduate, and undergraduate students motivated this

work.

2.4 Hybrid Multi-Cloud Computing with Cloudmesh
Cloud computing providers offer their customers on-demand self-

service computing resources that are rapidly elastic and accessible

via broad network access [33]. They accomplish this through the

economies of scale achieved by resource pooling (serving multi-

ple customers on the same hardware) and using measured services

for fine-grained customer billing [33]. Cloud providers offer these

resources in multiple service models including infrastructure as a

service, platform as a service, software as a service, and, recently,

function as a service [33]. These providers are rapidly offering new

platforms and services ranging from bare-metal machines to AI de-

velopment platforms like Google’s TensorFlow Enterprise platform

[29], and AI services such as Amazon’s text-to-speech service [4].

Customers can take advantage of cloud computing to reduce

overhead expenses, increase their speed and scale of service de-

ployment, and reduce development requirements by using cloud

providers’ platforms or services. For example, customers’ develop-

ing AI systems can utilize clouds to handle big data inputs for which

private infrastructure would be too costly or slow to implement.

However, having multiple competing cloud providers leads to situ-

ations where service availability, performance, and cost may vary.

Customers must navigate these heterogeneous solutions to meet

their business needs while avoiding vendor lock-in and managing

organizational risk. This may require comparing or using multiple

cloud providers to meet various objectives.

Today’s infrastructure deployments can benefit from a hybrid
multi-cloud strategy in which a mix of cloud-enabled services such

as computing, storage, and other services are integrated from on-

premises infrastructure, private cloud services, and a public cloud.

As pointed out earlier, Cloudmesh [51] is a framework and toolkit

that enables users to easily access hybrid multi-cloud environments.

Cloudmesh is an evolution of previous tools that have been used

by many users. Cloudmesh makes interacting with clouds easy by

creating a service mashup to access common cloud services across

numerous cloud platforms. Cloudmesh contains a sophisticated

command shell, a database to store JSON objects representing virtual

machines, storage, and a registry of REST services [52]. Cloudmesh

has a sophisticated plugin concept that is easy to use and leverages

python namespaces while integrating plugins from different source
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code directories [53]. Installation of Cloudmesh is available for

macOS, Linux, Windows, and Rasbian [51].

Cloudmesh works with a variety of cloud providers, including

AmazonWeb Services, Microsoft Azure, Google Cloud Platform, and

Oracle’s OpenStack based providers such as the academic research

serving Chameleon Cloud [12].

Recently we have also explored containers andmicroservices. The

work presented here summarizes some of this effort.With the help of

a plugin cloudmesh-openapi We can generate REST services, includ-

ing microservices and containers, to organize its functions and code.

In addition, cloudmesh can be distributed as a container and used

in a containerized environment. Through this ability, cloudmesh

services generated with cloudmesh-openapi can also be deployed on

Kubernetes.

3 REQUIREMENTS
Next, we present the most critical requirements that motivated our

architecture and design. We start with a set of general requirements.

Leveraging new Python features. Python is a very popular

choice with many data scientists. Our framework will lever-

age the newest Python 3 features such as Typing Interface
[44] in order to increase robustness and future-proofing of

our code base.

Ability to be used within Jupyter Notebooks.
The framework must be able to integrate with Jupyter note-

books as they are very popular with today’s data scientists.

The functionality must be easily accessible not only as part of

python programs but also within Jupyter notebooks. This is

of special importance also for cloud services such as Google

Colab [30] which for example, offers cloud-based Notebooks.

Easy of use is a critical aspect of the framework that is to be

addressed from the start by allowing for ease of creation, ease

of deployment, and easy use of the generated services. This

is accompanied by easy to use command-line tools.

Next, we list some more specific requirements that motivate our

architectural design.

Multi-Cloud Service Integration. The frameworkmust allow

us to integrate multiple cloud services, including IaaS, PaaS,

and SaaS. This also includes the ability to access AI-based

services offered by the various cloud providers.

Hybrid-Cloud Service Integration. The framework must al-

low integrating on-premise, private, and public clouds.

Generalized Analytics Service Generator. We need a gener-

alized analytics service generator. The first step in the activity

to generate an analytics service is to provide an OpenAPI Ser-

vice generator. Our generator will allow us to define essential

analytics functions such as (a) uploading and downloading

files to an analytics service; (b) specifying the functionality

through typing enhanced python functions; and (c) generat-

ing the code for the service.

Generalized Analytics Service Deployment. After the ser-

vice is generated, it needs to be deployed. For this step we

will be reusing the Cloudmesh deployment mechanism to

instantiate services on-demand on specified cloud providers

such as AWS, Azure, and Google.

Generalized Analytics Service Invocation. The next step in-
cludes the invocation of the deployed services. While ana-

lyzing some use cases, we identified that users often need to

invoke the same service many times to tune service parame-

ters in a quasi-realtime fashion while using parameters that

can not be included in the URL. Hence we will need to upload

input parameters through files if the simple typing data types

provided by our proposed framework is not sufficient.

REST Services Architecture. As REST has become the most

prominent architectural design principle, our Generalized ser-

vice architecture needs to be able to produce REST services.

Automated REST Service Generation for other Languages.
Our framework must have provisions included that allow the

integration into other programming languages and, on the

other hand, allows the integration of services and functions

developed in other languages.

Generalized Analytics Service Registry. As users and com-

munities may develop many different services, we must pro-

vide the ability to (a) find specifications of generalized analyt-

ics services (b) find use-cases of generalized analytics services

(c) find infrastructure on which such services can be deployed,

and (d) find deployed analytics services. For this, we need a

registry that can be queried by the community.

Generalized Composable Analytics Services. Servicesmust

be allowed to reuse other services to allow for easy integra-

tion. Thus we need to make our services composable. This

also includes the choreography of the execution of such com-

posable services.

4 ARCHITECTURE
To satisfy our requirements, we have designed a multilayered ar-

chitecture delivering a framework and toolkit to allow the easy

generation and deployment of generalized AI-based REST services.

It contains two main layers. The first layer is concerned with

generating the REST services, while the second focuses on easy

deployment in a multi-cloud environment. However, as we also deal

with hybrid infrastructure, we allow in the second layer access to

HPC and local on premise resources. In addition, our architecture

addresses the creation of containers and their deployment in docker

and Kubernetes. This way our framework is not only capable of

delopying into cloud virtual machines, but also into other infras-

tructure services, either offered locally or in the cloud. Both layers

can be accessed and control via a convenient Command shell and

client. As they are REST services, the deployed services can eas-

ily be accessed from other resources via the REST API. Next, we

describe some of the important features within each of the layers

while starting with the infrastructure deployment.

4.1 IaaS Access Layer
This layer allows us to deploy different infrastructure services on de-

mand while introducing an abstraction layer for compute resources

that allow IaaS access across the different platform offerings. Here,

we can leverage from the cloudmesh toolkit that provides us with

the basic interfaces to virtual machines to conveniently access in

homogeneous fashion AWS, Azure, Google, Oracle, and OpenStack.
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Access to HPC and Bare metal can be integrated and has been

showcased in the past in cloudmesh. We also have prototyped in

cloudmesh interfaces for accessing compute resources via docker

and Kubernetes.

All of the deployment can easily be managed through a simple

client shell that can also be used as a command line executor. This

system is one of the key components of cloudmesh and allows easy

integration of new commands and modules. This makes cloudmesh

extensible, while others can provide new functionality that can be

accessed in the command shell and command line interpreter. We

use the cloudmesh command shell to integrate the functionality

of the Generalized AI Service (GAS) Generator and describe its

functionality in more detail next.

4.2 GAS Generator
The Generalized AI Service (GAS)

1
Generator creates the REST

service from a simple function or class definition while utilizing

the newest python language features such as documented typing

information integrated in the program specification. The GAS Gen-

erator provides us with the fuel that is needed as part of the service

deployment. This is manifested in a number of artifacts for the

deployment. The artifacts include a specification derived from the

python program in OpenAPI format, the server code that is derived

from the OpenAPI format, and an optional container specification

file (e.g., Dockerfile). In addition, as we expect that the service is

going to be reused, we use a GAS Service registry in which we

record the specification description of the service as well as de-

ployment information on which the service ought to be deployed.

This deployment specification can be derived from other prototype

cloudmesh components such as cloudmesh-frugal, which can obtain

resources based on minimal cost. We have not explicitly included

this component in our architecture picture as we have not used it

as part of our benchmarks that we describe later.
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Fig. 3. Layered architecture of the cloudmesh OpenAPI framework.

1GAS the name GAS is derived from two different common usages. First, it refers

to gasoline, referring to fuel that we need to generate the services; the second is an

expandable material that fills the whole of a container. If you have better ideas or

analogies for naming our framework, please get in contact with us. We love to hear

from you!

4.3 GAS Workflow
To showcase why the framework is so useful for data scientists, we

are contrasting the definition workflow that a scientist undergoes

while using OpenAPI without and with GAS Generator in Fig. 4 and

Fig. 5.

The workflow in Fig. 4 showcases a typical workflow as promoted

by the developers of Swagger codegen [47]. The user identifies from

his use case an OpenAPI schema that is used to generate the code.

However, this is an unnecessary high entry barrier as the creation of

these schemas is complex. While using the swagger code generator,

a variety of code stubs in many different languages can be created.

The code generated requires an unnecessary high entry barrier as

we next need to identify how and where we include an implementa-

tion of a function that we want to expose as a REST service. Once

complete, the rest of the activity requires the remaining steps to be

executed by hand, but scripts could be developed to automatize it.

Next, we like to contrast this with our much-simplified approach.

As we know, the data scientists have the knowledge to write python

function (or class); we simply leverage this expertise and take the

function (or class) and provide it as input (fuel) to the GAS generator.

This is done with a simple one-line command invocation that just

includes the name of the python program in which the function

(or class) is defined. The scientist does not have to learn REST, the

scientist does not have to look into a code stub that is generated for

him, the scientist doe not even have to know how to instantiate or

run the service. Furthermore, the scientist does not have to know

about any security as we have added features to the code to leverage

the existing security mechanism as a simple flag to the GAS Gen-

erator command line instantiation. This simplification allows the

scientist to develop REST services in minutes rather than a month

as the entry barrier is very low. Additionally, as we are integrated

with cloudmesh infrastructure deployments, the instantiation of

the services can also be done with a one line command under the

assumption the scientist has accounts registered with cloudmesh

allowing him to authenticate and authorize the deployment of the

services in the cloud.

4.4 Scripting as Fuel for the GAS Generator
Next, we demonstrate through two examples of how simple it is

to obtain Services from python specifications. In our example, we

define one that uses a function definition returning a result. We

chose a simple add function and list the code related to it in Fig. 6.

We also expand upon the example and use a class definition to

showcase how to derive services using multiple paths instead of

being deployed in different services as showcased in Fig. 8. As we see

from the example, other than using the new typing feature provided

in Python, the example is just a regular Python program. It can be

tested locally on the system to check its functionality before we

generate the service.

Fig. 7 shows how to generate and deploy the service. As this

process is the same for the class-based definition and only differs

in the filename, we omitted it to include an explicit listing of the

access method for it.

Once the service is deployed the curl calls in Fig. 7 and Fig. 9

showcase how to interact with the service from the command line.

6



Using GAS for Speedy Generation of Hybrid Multi-Cloud Auto Generated AI Services Draft, Dec 2020, Bloomington, IN

Usecase

Schema

Code Generator

(31 Languages)

Implementation

Function

Service

Deployment

Verification

Hosting

Fig. 4. Schema-based component
flow to specify an analytics service.
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Fig. 5. Function-based component
flow to specify an analytics service.

Naturally, one can use any programming language that has built-in

libraries for HTTP requests to interface with the service (such as

requests in Python [1]). Once we execute the following lines in a

terminal, the result of the the addition will be calculated in the REST

service, and it is returned.

4.5 GAS Security
As we leverage OpenAPI and automatically generated OpenAPI

services, it is possible to leverage security mechanisms from the

underlying service implementation. To showcase this ability, we

added basic authentication into our framework as an example con-

figuration. However, it is certainly possible to extend this as the

services we use also support OAuth, ApiKey Authentication, Bearer

Authentication (JWT), and HTTPS support [23][52].

To demonstrate basic authentication, a cloudmesh user can cre-

ate an OpenAPI server whose endpoints are only accessible as an

authorized user. Currently, when basic auth is used, all endpoints

are secured with this method. In future versions, we intend to allow

securing selected methods. An example of the usage of basic auth is

provided on our Web page at [22].

5 DEPLOYMENT SCENARIOS
Due to the versatility of REST and our ability to integrate with a

variety of infrastructure services, a rich set of deployment scenarios

is possible. Two important scenarios related to single and multiple

service provider deployments are discussed next.

1 def add(x: float , y: float) -> float:

2 """

3 adding x and y.

4 :param x: x value

5 :param y: y value

6 :return: result

7 """

8 result = x + y

9 return result

Fig. 6. Defining an analytics function that is used to generate a REST service.

10 $ cms openapi generate add --filename =./add.py

11 $ cms openapi server start ./add.yaml

12 $ curl \

13 -X GET "http :// localhost :8080/ cloudmesh/add?x=1&y=2" -H "accept:␣text/plain"

14 # This command returns

15 > 3.0

Fig. 7. Generating, deploying, and invoking the REST service. aaaaaaaa

1 class Calculator:

2

3 @classmethod

4 def multiply(cls , x: int , y: int) -> int:

5 """

6 Multiply int by int and return an int.

7

8 :param x: the value of input #1

9 :param y: the value of input #2

10 :return: result of multiplying x by y

11 """

12 return x * y

13

14 @classmethod

15 def divide(cls , x: int , y: float) -> float:

16 """

17 Divide int by float and return a float.

18

19 :param x: the value of input #1

20 :param y: the value of input #2

21 :return: result of dividing x by y

22 """

23 return x / y

24

25 if __name__ == '__main__ ':

26 calc = Calculator ()

27 print("multiply␣1␣*␣2:␣", calc.multiply(1, 2))

28 print("divide␣6␣/␣3.14:␣", calc.divide(6, 2.3))

Fig. 8. Defining an analytics function with the help of class methods to
generate a REST service with multiple functions.

29 $ curl \

30 -X GET "http :// localhost :8080/ cloudmesh/multiply?x=1&y=2" \

31 -H "accept:␣text/plain"

32

33 $ curl \

34 -X GET "http :// localhost :8080/ cloudmesh/divide?x=6&y=3.14" \

35 -H "accept:␣text/plain"

Fig. 9. Defining an analytics function with the help of class methods to
generate a REST service with multiple functions.

5.1 Single Cloud Provider Hosted AI Service
In this scenario, a user deploys Cloudmesh OpenAPI on a virtual

machine from a cloud provider and uses it to host auto-generated,

RESTful, AI services. Next, the scientist constructs an AI service as

a set of Python functions that implement a workflow, for example,

downloading data from a remote server, training an AI model, up-

loading a new sample for prediction, and running a prediction on
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that sample. After the deployment, the service is accessible using

standard HTTP request methods. In Fig. 10 we show a remote client

that accesses such a typical AI service workflow. Here the service

is just deployed on a virtual machine from a single cloud provider.

Cloudmesh provides the choice on which infrastructure provider to

place the service. Through our security mechanism, the service can

either be exposed to the public or to authenticated and authorized

users.

Download Data

Train

Upload

Predict

Cloudmesh OpenAPI

Cloud Hosted Virtual Machine

1

2

3

4

Remote Client

request response

Fig. 10. Example AI Service Workflow to obtain data, train, upload data for
prediction, as well as the interaction with it.

5.2 Multi-Cloud Hosted AI Service
In our next scenario, we like to depict that it is possible to deploy the

same service on multiple clouds through the use of our sophisticated

but easy to use command clients. Detailed information about the

exact commands are provided in our manual [51]. Through this we

can, for example, evaluate suitable providers for our deployment

through benchmarking the service execution on each provider. This

is precisely what we will be showcasing in our benchmark section

and demonstrate this approach’s feasibility. Thus the scientist not

only obtains the ability with GAS Generator to develop and deploy

services, but also to evaluate their performance on a variety of

infrastructures. An example is provided in Fig. 11 where a scientist

deploys, for example, a service on AWS, Azure, and Google. As

they are asynchronous services, the scientist can query the services

simultaneously and gathers responses and benchmarks. Obviously,

this can be used in a real scenario to integrate compute resources

from multiple providers that can be accessed via our GAS services.

It also allows specific adaptations such as the integration of cloud AI

services with one provider that are not accessible in another. Hence

the framework can also be utilized to benchmark secondary services

that are offered by a particular provider, or if they are offered by

more than one, they can be comparatively evaluated.

re
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Provider 1
AWS

Provider 2
Azure

Provider 3
Google

Remote Client

Fig. 11. Mult-Cloud AI Services: A client simultaneously accesses an AI
service hosted on three separate cloud providers, AWS, Azure, and Google,
to benchmark provider performance.

6 BENCHMARK
In this section we describe our benchmark results.

6.1 Infrastructure
For a comparison of our services, we want to compare service de-

ployments on virtual machines that are hosted on various cloud

providers. We have chosen to select similar virtual machines for

conducting the benchmark. This includes AWS [2], Azure[34], and

Google [21].

In addition, we are performing some bare metal experiments on

two Raspberry PI clusters, one with Raspberry PI4’s and the other

with Raspberry PI 3b+’s. The latter has a management node, a PI 4,

and worker nodes that are PI 3b+. The inclusion of the Raspberry

platform was important to us as it demonstrates the capability of

IoT and Edge computing devices that may become more prevalent

in the future for delegating tasks to the edge. We further provide a

docker container for a comparison of containerized services.

6.2 Application
We developed benchmark tests that are pytest replications of Scikit-

learn artificial intelligent algorithms. These pytests are then run

on different cloud services to benchmark statistics on how they

perform.

The team obtained cloud service accounts from AWS, Azure,

Google, andOpenStack. To deploy the pytests, the teamused Cloudmesh

and its OpenAPI based REST services to benchmark the performance

on different cloud services.

Benchmarks include components like data transfer time, model

train time, model prediction time, and more. Besides this report,

scripts and other code are provided for others to replicate our tests.

We provide two example benchmarks for the Eigenfaces SVM

example. The first deploys and measures the AI service on a single

cloud provider at a time (see 6.5), and the second deploys a multi-

cloud (see 6.6) AI service measuring the service across the clouds in

parallel.

8



Using GAS for Speedy Generation of Hybrid Multi-Cloud Auto Generated AI Services Draft, Dec 2020, Bloomington, IN

6.3 Algorithms and Datasets
This project uses a simple example algorithm and dataset. We have

chosen to use an example included in Scikit-learn as they are widely

known and can be used by others to replicate our benchmarks easily.

Nevertheless, it will be possible to easily integrate other data sources,

as well as algorithms, due to the generative nature of our code base

for creating REST services. Within Scikit-learn we have chosen the

Eigenfaces SVM Facial Recognition example as it represents a

very common data science usage pattern. This example conducts

a facial recognition that first utilizes principle component analysis

(PCA) to generate eigenfaces from the training image data, and then

trains and tests an SVM model [46]. This example uses the real

world Labeled Faces in the Wild dataset consisting of labeled images

of famous individuals gathered from the internet [31].

6.4 VM Selection
When benchmarking cloud performance, it is important to iden-

tify and control VM deployment parameters. This allows one to

analyze comparable service offerings, or identify opportunities for

performance improvement by varying deployment features such

as machine size, location, network, or storage hardware. These

benchmark examples aimed to create similar machines across all

three clouds, and measure their service performance. See Tab. 1

for a summary of the parameters controlled in these benchmark

examples.

One key component is the virtual machine size, which determines

the number of vCPUs, the amount of memory, attached storage

types, and resource sharing policies. Resource sharing policies in-

clude shared core machine varieties—which providers offer at less

expensive rates—that allow the virtual machines to burst over its

base clock rate in exchange for credits or the machine’s inherent

bursting factor [3, 28]. For this example, we chose three similar

machine sizes that had comparable: vCPUs, underlying processors,

memory, price, and were not a shared core variety. We installed the

same Ubuntu 20.04 operating system on all three clouds.

Another factor that can affect performance, particularly in net-

work latency, is the zone and region selected. We deploy all bench-

mark machines to zones on the east coast of the United States. This

helps control variations caused by network routing latency and

provides more insight into the inherent network performance of

the individual cloud services.

Because cloud providers can observe varying loads during the

day, the benchmark execution time is another parameter to control.

In our single cloud provider benchmark for the Eigenfaces SVM

example, clouds were tested at least twice and were run sequen-

tially between the hours of approximately 19:45 EST and 03:30 EST

starting with Google and ending with Azure. In the Eigenfaces SVM

example, only 60 runs were conducted on Azure due to a failed VM

deployment caused by factors outside of the benchmark script’s

control. Compared to our single cloud provider benchmark, our

multi-cloud benchmark benefits from all clouds being tested at the

same time.

Table 1. Controlled VM parameters for cloud benchmarks.

AWS Azure Google

Size (flavor) m4.large Standard_D2s_v3 n1-standard-2

vCPU 2 2 2

Memory (GB) 8 8 7.5

Image ami-0dba2cb6798deb6d8 Canonical:0001-com-

ubuntu-server-

focal:20_04-

lts:20.04.202006100

ubuntu-2004-lts

OS Ubuntu 20.04 LTS Ubuntu 20.04 LTS Ubuntu 20.04 LTS

Region us-east-1 eastus us-east1

Zone N/A N/A us-east1-b

Price ($/hr) 0.1 0.096 0.0949995

Table 2. Raspberry Pi and Docker Specifications

Docker MacBook

Pi 3B+ Pi 4 (On MBP) Pro i5 3.1GHz

Cores 4 4 2 2

Memory (GB) 1 8 2 8

OS Raspberry OS 10 Raspberry OS 10 Ubuntu 20.04 LTS macOS

Version Kernel 5.4.51 Kernel 5.4.51 NA Big Sur

Purchase Cost ($) 51.99 109.99 NA NA

Energy Cost ($/year) 5.36 6.73 NA NA

Price ($/hr) 0.0065 0.0133 NA NA

The Price is the purchase cost and 1yr energy cost, amortized over a year and given for

each hour of the year.

6.5 Single Cloud Provider AI Service Benchmark.
The benchmark script for the Eigenfaces SVMexample uses Cloudmesh

to create virtual machines and set up a Cloudmesh OpenAPI environ-

ment sequentially across the three measured clouds, Amazon, Azure,

and Google. After the script sets up the environment, it runs a series

of pytests that generate and launch the Eigenfaces-SVM OpenAPI

service, and then conducts runtime measurements of various service

functions. Also, we run the same pytests on two Raspberry Pi mod-

els, a MacBook Pro running a Docker container, and a bare metal

MacBook Pro to demonstrate Cloudmesh OpenAPI’s flexibility for

multi-platform use.

The benchmark runs the pytest in two configurations. After the

benchmark the script sets up a virtual machine environment, it runs

the first pytest locally on the OpenAPI server and measures five

runtimes:

1. download data: Download and extraction of remote image

data from ndownloader.figshare.com/files/5976015

2. train: The model training time when run as an OpenAPI

service

3. scikitlearn train: The model training time when run as the

Scikit-learn example without OpenAPI involvement

4. upload local: The time to upload an image from the server

to itself

5. predict local: The time to predict and return the target label

of the uploaded image

The benchmark runs the second pytest iteration as a remote client

and interacts with the deployed OpenAPI service over the internet.

It tests two runtimes:

1. upload remote: The time to upload an image to the remote

OpenAPI server
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2. predict remote: The time to run the predict function on the

remote OpenAPI server, and return the target label of the

uploaded image

In Fig. 12 we compare the download and extraction time of the

labeled faces in the wild data set. This data set is approximately

233 MBs compressed, which allows us to measure a non-trivial data

transfer. Lower transfer times imply the cloud has higher throughput

from the data server, less latency to the data server, or that the cloud

has a better performing internal network. The standard deviation is

displayed to compare the variation in the download times. Because

the difference between commercial and residential internet speeds

dominates the function runtime, we do not compare the clouds to

the Pi models, MacBook, or docker container.
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Fig. 12. Runtime for downloading the data used in the Eigenfaces SVM
benchmark.

In Fig. 13 we measure the training time of the Eigenfaces-SVM

model both as an OpenAPI service and as the basic Scikit-learn

example. This allows us to measure the runtime overhead added by

OpenAPI compared to the source example. Here, the two functions

are identical except that the OpenAPI train function makes an addi-

tional function call to store the model to disk. This is necessary to

share the model across the train and predict functions. In the figure

there are two bars per cloud provider. The blue bars are the training

time of the model when hosted as a Cloudmesh OpenAPI function.

The orange bars are the training time of the Scikit-learn example

code without Cloudmesh OpenAPI involvement. The bars plot the

mean runtimes and the error bar reflects the standard deviation

of the runtimes. In Fig. 14 we show the same plot without the Pi

models, MacBook, and docker results to allow a closer comparison

of the three comparable clouds.

In Fig. 15 we measure the time to upload an image to the server

both from itself and from a remote client. This allows us to compare

the function runtime as experienced by the server, and as experi-

enced by a remote client. The difference helps determine the network

latency between the benchmark client and the cloud service. In the

figure, there are two bars per cloud provider. The blue bars are the
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Fig. 13. Runtime for training on the data used in the Eigenfaces SVM
benchmark.
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Fig. 14. Closeup of the Runtime for training on the data used in the Eigen-
faces SVM benchmark without the data for the Pi.

runtime of the upload function as experienced by the server, and

the orange as experienced by the remote client. The bars plot the

mean runtimes and the error bar reflects the standard deviation of

the runtimes. For the Pi models, MacBook, and docker container,

we only measure the local function runtime.

In Fig. 16 we measure the time to call the predict function on

the uploaded image. Again we run this once from the local server

itself, and a second time from a remote client to determine client and

server runtimes. In the figure, there are two bars per cloud provider.

The blue bars are the run time of the predict function as experienced

by the server, and the orange as experienced by the remote client.

The bars plot mean runtimes and the error bar reflects the standard

deviation of the runtimes. For the Pi models, MacBook, and docker

container, we only measured the local function runtime.
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Fig. 15. Runtime for uploading the data used in the Eigenfaces SVM bench-
mark.

aws azure google mac book docker pi 4 pi 3b+
Cloud

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
ec

on
ds

Predict Function Runtime

local
remote

Fig. 16. Runtime for the prediction used in the Eigenfaces SVM benchmark.

Tab. 3 presents a full listing of test results. For the upload and

predict tests, the ’type’ column denotes whether the test was run

locally (server runtime) or remote (client runtime).

In Tab. 5 we present a cost analysis of the service functions. The

analysis uses the price from Tab. 1 and Tab. 2. The price for the

cloud virtual machines are based on provider advertised costs, while

the price for the Pi models are based on the hardware cost and one

year of energy cost amortized for one year. This does not include

other costs such as cooling, networking, or real estate. For the Pi

energy cost we assume a full and constant load. We utilize power

consumption benchmarks from [27] and Indiana residential kWH

cost from [7] to calculate the expected Energy Cost per year. We

calculate the cost to run each function and compare the clouds and

Raspberry Pi 4 to the Raspberry Pi 3b+. We compare the percent

runtime decrease from the Pi 3b+ to the clouds and Raspberry Pi4,

and the percent cost increase from the Pi 3b+ to the clouds and

Raspberry Pi 4.

6.6 Multi-Cloud AI Service Benchmark
In this benchmark, our script first acquires VMs, installs Cloudmesh

OpenAPI, and launches the Eigenfaces SVM AI service on three

separate cloud providers. Because Cloudmesh has limited parallel

computing support, the script deploys the VMs in a serial manner.

After the services are running, we then run our tests in a parallel

manner as depicted in Fig. 11. Testing in parallel provides faster

benchmark results and better equalizes benchmark testing condi-

tions. The benchmark conducts requests to each cloud in parallel,

so they experience similar network conditions. For example, in a

serial testing model when downloading data from a remote server,

the remote server may experience varying loads which will ulti-

mately result in different throughputs for the various tests. Our

parallel tests better equalize these conditions by having each cloud

download the data under the same network conditions.

In the benchmark, we compute the means from 30 runs of a

workflow that includes one download data invocation, one train

invocation, 30 upload invocations, and 30 predict invocations. We

run the workflows in parallel on the separate clouds using multi-

processing on an eight-core machine.

In Fig. 17 we depict the combined runtime of our benchmark tests.

This allows us to compare the complete execution time of an AI

service workflow.

Fig. 17. Mean runtime of the Eigenfaces SVM workflow deployed as a
multi-cloud service.

In Tab. 4 we provide complete test results for the multi-cloud

benchmark.

7 LIMITATIONS
Azure has updated their libraries and discontinued the version 4.0

Azure libraries. We updated Cloudmesh to use the new library, but

not all features, such as virtual machine delete, are implemented or

verified.
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8 CONCLUSION
This paper has introduced a framework and tool called GAS Gener-

ator that allows data scientists not experienced enough with REST

and/or OpenAPI to generate REST services from python functions

quickly. The overall time for deploying the resulting service was re-

duced from several months by inexperienced data scientists to under

a week. The service can be provisioned on public clouds and shared

with other users. Authentication is built into our framework while

leveraging common REST service practices. In a small benchmark

executed on the various cloud providers as well as local hardware, in-

cluding Raspberry PIs, we have seen that the cloud providers, when

using similar resources and images, perform similarly. To compare

the services with IoT devices such as Raspberry PI 3b+ and 4 we

have chosen a small enough example that can be conducted on them

and can be used as a reference to other IoT devices in the future. We

found especially that in the case of the PI 4, the performance was

quite good for our example. We also provided a cost-performance

analysis to compare the IoT devices with the cost used on the cloud

to conduct the task over a year’s worth of activities. We find that

the PI is surprisingly cost-effective.

However, our most significant gain from this project is the reduc-

tion in manpower and entry barrier it takes to create and deploy our

AI services. Due to the generalized approach while using python

function developers and data scientists can naturally integrate more

complex tasks as well as tasks that leverage cloud-specific AI ser-

vices that are uniquely offered by particular providers. GAS Gener-

ator is an open-source project, and we appreciate contributions to

the project. Please contact the first author at .
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Table 3. Test results for the Eigenfaces SVM single cloud provider bench-
mark.

test type cloud mean min max std

download data local aws 20.58 17.23 31.80 2.77

download data local azure 20.81 13.56 42.70 6.94

download data local docker 820.98 820.98 820.98 0.00

download data local google 18.00 17.06 19.38 0.48

download data local pi 3b+ 130.17 123.84 149.40 5.39

download data local pi 4 47.67 43.43 75.60 5.72

predict local aws 0.03 0.02 0.05 0.00

predict local azure 0.02 0.01 0.03 0.00

predict local docker 0.03 0.03 0.03 0.00

predict local google 0.03 0.01 0.06 0.00

predict local mac book 0.12 0.12 0.12 0.00

predict local pi 3b+ 0.12 0.10 0.14 0.01

predict local pi 4 0.08 0.08 0.08 0.00

predict remote aws 0.40 0.26 0.80 0.18

predict remote azure 0.36 0.24 0.60 0.13

predict remote google 0.36 0.27 0.82 0.16

scikitlearn train local aws 35.89 35.11 46.45 1.77

scikitlearn train local azure 40.13 34.95 43.96 3.29

scikitlearn train local docker 53.76 53.76 53.76 0.00

scikitlearn train local google 42.13 41.77 42.49 0.13

scikitlearn train local mac book 32.53 32.53 32.53 0.00

scikitlearn train local pi 3b+ 222.63 209.18 231.90 7.87

scikitlearn train local pi 4 88.32 87.78 89.14 0.33

train local aws 35.72 34.91 46.50 1.73

train local azure 40.28 35.30 47.50 3.32

train local docker 54.72 54.72 54.72 0.00

train local google 42.04 41.52 45.93 0.71

train local mac book 33.82 33.82 33.82 0.00

train local pi 3b+ 222.61 208.56 233.48 8.40

train local pi 4 88.59 87.83 89.35 0.32

upload local aws 0.01 0.01 0.01 0.00

upload local azure 0.01 0.00 0.01 0.00

upload local docker 0.02 0.02 0.02 0.00

upload local google 0.01 0.01 0.01 0.00

upload local mac book 0.02 0.02 0.02 0.00

upload local pi 3b+ 0.09 0.04 0.48 0.08

upload local pi 4 0.02 0.02 0.02 0.00

upload remote aws 0.43 0.16 1.13 0.21

upload remote azure 0.32 0.15 0.50 0.15

upload remote google 0.31 0.18 0.73 0.18

Table 4. Test results for the Eigenfaces SVM benchmark deployed as a
multi-cloud service.

test type cloud mean min max std

download data remote aws 20.51 17.57 34.42 3.82

download data remote azure 18.60 13.49 32.65 4.53

download data remote google 17.90 17.13 21.86 0.85

predict remote aws 4.15 3.59 5.42 0.57

predict remote azure 3.93 3.40 6.65 0.74

predict remote google 4.13 3.74 6.37 0.60

train remote aws 35.61 35.24 39.53 0.73

train remote azure 35.89 35.08 40.00 0.95

train remote google 41.98 41.58 45.71 0.71

upload remote aws 10.08 4.89 16.52 4.38

upload remote azure 8.46 4.72 13.92 4.05

upload remote google 8.87 5.39 15.44 4.52

Table 5. Cost Analysis of function runtimes with % cost increase and %
runtime decrease relative to the Raspberry Pi 3B+.

test type cloud mean cost % runtime decrease % cost increase

download data local aws 20.58 5.72e-04 NA NA

download data local azure 20.81 5.55e-04 NA NA

download data local google 18.00 4.75e-04 NA NA

predict local aws 0.03 8.33e-07 75.00 281.87

predict local azure 0.02 5.33e-07 83.33 144.39

predict local google 0.03 7.92e-07 75.00 262.77

predict local mac book 0.12 NA 0.00 NA

predict local docker 0.03 NA 75.00 NA

predict local pi 4 0.08 2.96e-07 33.33 35.68

predict local pi 3b+ 0.12 2.18e-07 0.00 0.00

predict remote aws 0.40 1.11e-05 NA NA

predict remote azure 0.36 9.60e-06 NA NA

predict remote google 0.36 9.50e-06 NA NA

scikitlearn train local aws 35.89 9.97e-04 83.88 146.24

scikitlearn train local azure 40.13 1.07e-03 81.97 164.32

scikitlearn train local google 42.13 1.11e-03 81.08 174.60

scikitlearn train local mac book 32.53 NA 85.39 NA

scikitlearn train local docker 53.76 NA 75.85 NA

scikitlearn train local pi 4 88.32 3.27e-04 60.33 -19.26

scikitlearn train local pi 3b+ 222.63 4.05e-04 0.00 0.00

train local aws 35.72 9.92e-04 83.95 145.10

train local azure 40.28 1.07e-03 81.91 165.33

train local google 42.04 1.11e-03 81.11 174.04

train local mac book 33.82 NA 84.81 NA

train local docker 54.72 NA 75.42 NA

train local pi 4 88.59 3.28e-04 60.20 -19.01

train local pi 3b+ 222.61 4.05e-04 0.00 0.00

upload local aws 0.01 2.78e-07 88.89 69.72

upload local azure 0.01 2.67e-07 88.89 62.93

upload local google 0.01 2.64e-07 88.89 61.23

upload local mac book 0.02 NA 77.78 NA

upload local docker 0.02 NA 77.78 NA

upload local pi 4 0.02 7.40e-08 77.78 -54.77

upload local pi 3b+ 0.09 1.64e-07 0.00 0.00

upload remote aws 0.43 1.19e-05 NA NA

upload remote azure 0.32 8.53e-06 NA NA

upload remote google 0.31 8.18e-06 NA NA
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